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The influence of vibronic interactions on the chiroptical spectra associated with a threesome of 
nearly degenerate electronic excited states in a dissymmetric molecular system is examined on a formal 
theoretical model. The model considers two vibrational modes to be effective in promoting pseudo 
Jahn-Teller (PJT) type interactions between the three closely spaced electronic excited states. Formal 
expressions are developed for the rotatory strengths of individual vibronic levels derived from the 
coupled electronic states. Two mode (vibrational)-three state (electronic) vibronic Hamiltonians are 
constructed (basis set size, 63-108, depending upon interaction parameters used) and diagonalized for 
a large number of different parameter sets representative of various vibronic coupling strengths, electron- 
ic energy level spacings, oscillator (vibrational mode) frequencies, and electronic rotatory strengths. 
Diagonalization of these vibronic Hamiltonians yields vibronic wave functions and energies which 
are then used to calculate "rotatory strength spectra" for the model system. The calculated results 
demonstrate the profound influence which vibronic interactions of the PJT type may have on the sign 
patterns and intensity distributions within the rotatory strength spectrum associated with a set of 
nearly degenerate electronic states. The implication of these results for the interpretation of circular 
dichroism spectra of chiral transition metal complexes with pseudo tetragonal symmetry are discussed. 
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1. Introduction 

The use of  ch i rop t ica l  p rope r t i e s  to p robe  the s te reochemical  and  electronic  
features of  d i s symmet r i c  t r ans i t ion  meta l  complexes  has recieved a great  deal  of  
a t t en t ion  over  the pas t  fifteen years. The c i rcular  d i ch ro i sm (CD) spectra  of  meta l  
complexes  represent ing  m a n y  s t ruc tura l  classes (classified with respect  to coord i -  
na t ion  number ,  the size, number ,  and  d i s t r ibu t ion  of  chelate  rings, d o n o r  a t o m  
type, and  n u m b e r  of  d o n o r  sites per  l igand molecule)  have been repor ted  and  
spec t ra -s t ruc ture  re la t ionsh ips  have been p r o p o s e d  for a number  of  these systems. 
A l though  the C D  assoc ia ted  with  the pure  l igand- l igand  t rans i t ions  as well as the 
l igand-meta l  charge  t ransfer  (CT) t rans i t ions  have been s tudied for many  meta l  
complexes ,  it is genera l ly  the C D  spect ra  assoc ia ted  with the meta l  ion d-d or  
l igand-f ie ld  t rans i t ions  which are used as d iagnos t ic  p robes  of  s t ructure  or  struc- 
tura l  changes.  

The spec t ra -s t ruc ture  re la t ionsh ips  c o m m o n l y  e m p l o y e d  in in te rpre t ing  the 
C D  of  t r ans i t ion  meta l  complexes  require  the ass ignment  of  the observed  C D  
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bands to specific electronic d-d transitions on the metal ion. Having identified a 
specific CD band or set of bands with a specific electronic transition or set of 
transitions, one may then apply rules which relate the sign and, sometimes, the 
magnitude of the observed CD to specific structural features of the complex. 
These rules may be based entirely on correlations between empirically derived 
spectroscopic and structural data, or on theoretical models which relate the 
fundamental stereochemical and electronic structural properties of the system to 
the spectroscopic observables via quantum mechanical representations. In most 
instances, the theoretical models offered as bases fpr the observed spectra-structure 
relationships either have neglected the influence of vibronic interactions or have 
treated vibronic interactions in a heuristic or qualitative way. In some cases, 
"vibronic effects" have been invoked in a purely ad hoc way to "explain" apparent 
anomalies in the observed CD spectra. 

Vibronic interactions play a particularly important role in determining the 
spectroscopic properties of d-d transitions in transition metal complexes which 
are nearly centrosymmetric. In these systems, the non-centrosymmetric compo- 
nents of the ligand field are generally small and are relatively ineffective in mixing 
the gerade d-d states with ungerade states which will lead to observable absorption 
intensity in electric dipole radiation. In most cases, the mechanism by which the 
ligand-field transitions gain intensity is through vibronically induced mixing with 
ungerade states. Generally the gerade ligand-field states and the ungerade states 
with which they can mix via a vibronic mechanism are sufficiently separated in 
energy that the vibronic coupling energy can be assumed small compared to the 
energy separation. Under these conditions the socalled Herzberg-Teller (H-T) 
vibronic coupling theory can be applied to obtain a reasonably reliable represen- 
tation of the vibronically-induced intensity mechanism. The adiabatic approxi- 
mation is assumed in the H-T theory so that electronic motion is fully correlated 
to instantaneous nuclear positions. 

When the ratio of vibronic coupling energy to energy separation between two 
interacting electronic states is greater than or approaches unity, the adiabatic 
approximation is no longer valid and the H-T theory is not applicable. Under 
these circumstances, the nuclear motion is modified by electronic motions leading 
to a deformation of the potential energy surface associated with the coupling 
mode (s). In this case a non-adiabatic representation is required. Manifestations 
of this kind of vibronic coupling are the Jahn-Teller (JT) and pseudo Jahn-Teller 
(PJT) effects arising, respectively, in the presence of degenerate and nearly de- 
generate electronic states [1]. 

Weigang and coworkers [2] have worked out in some detail the influence of 
H-T type vibronic coupling on the chiroptical properties of optically active 
molecules. Recently, we have been concerned with the consequences of JT and 
PJT effects on the chiroptical properties of optically active systems having de- 
generate or nearly degenerate electronic states [3-5]. The work described here- 
in is related to the latter problem in pseudo-tetragonal metal complexes. 

It is quite common in metal complexes of pseudo-tetragonal symmetry to find 
several d-d states which lie within 1000-4000 cm -1 of each other in energy. 
Furthermore, the vibrational modes localized in the ML4 or ML 6 clusters of such 
systems (M = metal ion and L = donor atom of ligand) are generally expected to 
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be quite effective in promoting mixing among these nearly degenerate or closely 
spaced electronic states. In the present study we consider a model having just C2 
symmetry in which there are three closely spaced d-d electronic states, two of 
which are nontotally symmetric with respect to the C2 operation (symmetry type 
B) and one of which is totally symmetric (symmetry type A) with respect to the 
C2 operation. The A and B states are assumed to couple through two different 
vibrational modes, each of which is nontotally symmetric. We shall assume that 
transitions from the ground state to each of the three excited states are inherently 
optically active, gaining their rotatory strengths from the dissymmetric com- 
ponents of the ligand field. In our model system, only vibronic interactions 
between the three closely spaced electronic excited states are considered and the 
net rotatory strength associated with transitions to these three states is assumed 
to be invariant to vibronic coupling. The only consequences of the vibronic 
interactions, then, are redistributions of rotatory strength of CD intensity among 
the vibronic levels derived from the three interacting electronic states, and alter- 
ations in the vibronic energy level spectrum. Since the net or total rotatory 
strength associated with the three electronic excited states remains unaffected by 
the vibronic interactions introduced in our model, the total integrated area of the 
associated CD bands must also be invariant to the vibronic interactions. However, 
the shapes and profiles of the CD bands are very sensitive to the strength and 
nature of the vibronic interactions and in the presence of strong vibronic couplings 
it becomes impossible to interpret the CD spectrum in terms of individual bands 
originating with transitions to specific electronic states. In these cases, spectra- 
structure relationships requiring assignments of CD bands to specific electronic 
transitions can not be used. 

2. Theory 

2.1. Basic Model 

As a model system we consider a transition metal complex which has near 
tetragonal (D4h) or digonal dihedral (D2) symmetry but whose actual symmetry 
is just C2. We shall assume that the 4, t/, and ~ d-orbitals of the metal ion all lie 
within an energy interval of ~ 4000 cm - 1 in the complex, and that the e d-orbital 
lies highest in energy while the 0 d-orbital lies lowest. Restricting our attention to 
d 9 and low-spin d 8 systems, the d-d transitions of interest will be: O-+g, ~--+e, tl--+~, 

and {--+e. The symmetries of the respective d-orbitals in the D4h, D2, and C 2 point 
groups are: 

D4h B1 o Alo E o E o B2o 
D 2 A A B 2 B 3 B 1 
C2 A A B B A 

Given the near degeneracy of the 4, ~/, and ~ levels in our model system, we 
shall assume that the states formed by the ~--+e, r/~e, and ~ e  excitations are 
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nearly degenerate and subject to strong PJT interactions. The electronic energy 
levels of interest in our study, then, are the following: 

_ _ 0 

A, 

7 
A 

-A 

l 

~po ~ (ground state) 

In this diagram the energy zero is chosen midway between the ~p~ and 
tP~ ~ 4) excited states. The wave functions ~po, ~po, ~po, and ~po are assumed to be 
solutions to the Schroedinger equation, 

o o = E %  ~ (1) 

where ~o is that part of the full electronic Hamiltonian which reflects the D 2 

symmetry of the model system with the nuclei clamped in the equilibrium con- 
figuration of the ground electronic state. The wave functions ~po, then, may be 
classified according to their transformation properties under the symmetry 
operations of the D 2 point group. 

The complete vibrational-electronic (vibronic) Hamiltonian of the system may 
be written as, 

~( r ,  Q) = We(r, Q) + y , (O)  (2) 

where y , (Q)  is the kinetic energy operator for nuclear vibrational motion, {r} 
represents the collection of electron coordinates, {Q} represents the collection of 
nuclear displacement coordinates (measured from the ground state equilibrium 
configuration), and 

~e(r, Q)= J-e(r)+ V(r, Q) (3) 
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where ff-e(r) is the kinetic energy operator for electrons. The electronic Hamil- 
tonian We(r, Q) reflects the true symmetry (C2) of the model system. Assuming 
displacements from the equilibrium geometry, {Q} =0, are small, the electronic 
Hamiltonian We(r, Q) may be expanded in a series about  {Q} = 0, 

, 1 
We(r, Q) = W~ + 2a ga Q~a -1- 22a 2b Vs + ... (4) 

where V '=  [OV(r, Q)/OQa]o, V'~,= [02V(r, Q)/OQa~?Qb]o, and a and b label normal 
coordinates of the system. The term WOe is defined by, 

~"~e 0 = ~'-e(r) + VdO(D2) + V O(c2) (5) 
__ 0 
- - d  e 4 -  Vc 0 

where V~ ~ is that part of the ligand field interaction potential not included in do. 
W ~ has C2 symmetry, whereas A ~ has D2 symmetry. Both Vd~ and V~~ are 
evaluated with the nuclei at their equilibrium positions, {Q} = 0. 

We shall assume that two vibrational modes are responsible for PJT inter- 
actions within the manifold of states ~po, ~po, and ~po. We shall label these modes as 
Q, and Qr Both of these vibrational modes are nontotally symmetric (B symmetry) 
in the C2 point group of the molecular system and they have Eg parentage in the 
tetragonal D4h point group. The Q, mode is effective in coupling tp ~ and ~po, and 
the Q~ mode is effective in coupling ~0 ~ and ~po. Considering only linear terms in 
the expansion of 2/~e(r, Q), we may write: 

J~g~e(r, Q) = W ~ + Vn'Qn 4- V~'Q~. (6) 

Utilizing Eqs. (5) and (6) we may rewrite We(r, Q) as, 

W~(r, Q)=/;o + V,'Q, + V~'Qr + V~ ~ . (7) 

In our model we choose the eigenfunctions of doe as zero-order basis functions and 
treat the terms, V~'Q, + V~'Q~ + v~ ~ as a perturbation on these functions. We neglect 
perturbations on the ground state ~v ~ and consider only interactions among the 
three nearly degenerate states ~po, ~po, and ~o. The term V~ ~ will mix ~po and ~o. 

2.2. ldbronic Wave Functions 

The vibronic wave functions for our three-state model system may be ex- 
pressed as: 

+- OXeN X~N 
~3Z.,v Z.,~ C,~Z~(t/)Zv(~) (8) 

where, 

~o, ~po2, ~p0 = zeroth-order electronic wave functions, 

Zv(t/) = wave function for perturbing mode Q,, 

z~(~) = wave function for perturbing mode Q~, 

v, v = vibrational quantum numbers, 

n-- vibronic quantum number. 
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These vibronic wave functions are found as eigenfunctions of the Hamiltonian: 

0 0 0 =--~e - ' ~ /  - I - ~  -I- V~ Qq"~- V~'Q~ ---~ Vc 0 (9)  

where ,~o and t;~ are harmonic oscillator Hamiltonians for modes @, and Qr The 
Hamiltonian, 0 o o o =de + ~ ,  +A~, is diagonal in the basis ~p~ where i=  1, 2, 
or 3, whereas the interaction operators, V,'Q, + V~'Qr + V~ ~ are entirely off-diagonal 
in this basis. 

To obtain the coefficients A .... B, vv, and Cn~ ~ in Eq. (8) and thereby determine 
the vibronic wave functions q% we diagonalize the Hamiltonian matrix formed 
from the basis set ~v/~ = 1, 2, or 3) Z~(t/)Z,(~) and the Hamiltonian operator given 
in Eq. (9). The diagonal elements of this matrix may be expressed as: 

1 1 

where co(t/) and co(i) are the natural oscillator frequencies of vibrational modes Q, 
and @~ in electronic state i. As was noted in the previous section, we set E ~ = - A, 
E2 ~ = A, and E ~ = A'. The off-diagonal elements of the Hamiltonian matrix are 
given by: 

+ yo.~w3~r (11) 

where, 

0 ~ 0 ~ j =  <~ I v;Itpj > 

/~ij = <~~ I V~'l~~ > 

w~ = <~~176176 >. 

Furthermore, we note that: 

<zv@lQ.Iz~,(n)> = [(v+ 1)/231/2 v ' = v +  1 (12a) 

= (v/2) 1/2 v'= v -  1, (12b) 

= 0  v ' # v +  1, (12c) 

(;G(~)IQr v ' = v + l ,  (13a) 

= (v/2) 1/2 v'= v -  1, (13b) 

= 0  v ' . /=v+l .  (13c) 

If Q, and Qr are expressed as dimensionless quantities [as implied by Eqs. (12) and 
(13)], then eu and flu are expressed in energy units. By symmetry we note that 
(El 2 = (El a ~--- 0 ,  f l l  2 = f l2a = 0,  and 7 a 3 = 723 = 0. The only nonvanishing interaction 
matrix elements between electronic states are: (x23 = N, fll 3 = fl, and 7~ 2 =7- 

According to Eqs. (10) and (11) and the inherent symmetry constraints, the 
input parameters required to set up and diagonalize the vibronic Hamiltonian 
are summarized as follows: E ~ = -  A, E ~  E ~ =A' ,  co(t~), co(~), a, fl, and 7. 
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Diagonalization of the vibronic Hamiltonian gives us both the energies and the 
wave functions (8) of the vibronic states derived from the couplet ~po, ~po, and ~o ~ 
electronic states. 

2.3. Rotatory Strengths 

We shall be interested in the rotatory strengths associated with transitions 
from the ground electronic state ~po to the vibronic levels 4), derived from the 
coupled threesome of electronic states, ~p2, ~o, and ~p~. These rotatory strengths 
may be expressed as, 

Ro~ . = Im(P, �9 M,) (14) 

where, 

0 ! ! ^ P. = (~0oZo(t/)Zo(~)lpl~,), (15) 
0 t t M,  = (~.lmBpoZo(r/)Zo(~)). (16) 

In Eqs. (15) and (16), Z~(r/) and Z~(r are ground state oscillator functions for the 
Q, and Qr modes, respectively, in the ground electronic state,/i is the electric dipole 
moment operator, and ~h is the magnetic dipole moment operator. Both/i  and rh 
are pure electronic operators. Using the explicit form of ~,  from Eq. (8), we may 
rewrite Eqs. (15) and (16) as follows: 

P. = ~ ~ Sov(~)Sov(r + ee2B.ov + P~3C..3 , (17)  

M .  = ~ ~ So~(tl)So~(~)[M~ A ,~  + Me2B,~ + Me3 C,~v] . (18) 

where, 

Pe = (~P~176 , i= 1, 2, or 3 

M e = (Ip~176 i=  1, 2, or 3 

So~(r = ( z ; ( r 1 6 2  �9 

The Franck-Condon overlaps integrals, Soo(rl) and So~(~), may be evaluated 
from, 

v even 

= / 4,~(~.)oY,!t/! U/4 [e}'(r/)- o(t/)]'/2 ( ~  1)v/2(v !)1/2 (19a) 
S~176 ([o}(r/)-bo.}(tl)]2J [co'(r/)-bo}(r/)] 2v/2(v/2)[ ' 

v odd, Soy(t/) = 0, (19b) 

v even, 

S (~]----~J - ~L}(~)(2}t(~) ~1/4 [ ~ ( ~ ~  ( - -1)v /2( l j ! ) l /2  (20a)  

. . . .  [fico(~)+o),(~)j2j [co (~)+(o(~)] 2~/2(v/2)! ' 

vodd,  So~(~) = 0, (20b) 
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where co'(t/) and co'(~) are oscillator frequencies in the ground electronic state and 
co(q) and co(i) are excited state oscillator frequencies. Note that if co'(q) = co(t/) and 
co'(~) = co(i), then Sov(tl) = 0 for v # 0 and So~(~) = 0 for v ~ 0. 

The vibronic dipole and rotatory strengths expressions are summarized by, 

D.--IP.(x)12+ IP.(y)I 2 + IPn(z ) l  2 , (21) 

R, = Im[P,(x)M,(x) + P,(y)M,(y) + P,(z)M,(z)]. (22) 

To calculate D, and R,, one requires co(q), co'01), co(i), co'(~), P], P~, P~, M], M~, 
and M~ as well as the set of coefficients {A .... B .... C,~v}. 

3. Calculations 

To investigate the possible influence of vibronic interactions of the PJT type 
on the chiroptical observables of our model system, we carried out a large number 
of calculations based on the theoretical model described in Section 2. The input 
parameters for these calculations were the following: (a) electronic state energies, 
E ~ = - E  ~ = - A  and E ~ = A'; (b) vibronic coupling parameters, ~ and/~; (c) low- 
symmetry ligand field potential energy parameter, 7; (d) oscillator frequencies, 
co07), cd(~/), co(i), and co'(~); and, (e) the electronic transition moments, e~, e~, P~, 
M~, M~, and M~ We shall find it convenient to express A, A', ~, 13, and 7 in units 
of (1/2)h[co(q)+ co(~)], in which case we denote them by A, A', ~,/~, and 7. We shall 
also express co'07) in units of co(q) and co'(~) in units of co(i). The electronic dipole 
transition moments are expressed in arbitrary units as are the vibronic dipole 
strengths and rotatory strengths. 

The "output" of our calculations are: (a) vibronic wave functions expressed 
in the ~ ( i =  1, 2, or 3) Zv(~/)Z~(~) basis; (b) vibronic energy levels; (c) cartesian 
components of the vibronic electric and magnetic dipole transition integrals; 
(d) vibronic rotatory strengths and ~;, R,; (e) vibronic dipole strengths and ~ ,  D,; 
and, (f) "smoothed" rotatory strength spectra calculated from, 

1 2 2 ~(co)=~ .  R.exp[-  (co- co.)/~ ] (23) 

where 2=  bandwidth parameter, co, = eigenfrequency of n th vibronic level, R, = 
rotatory strength of the n t1~ vibronic level, and co is a frequency variable. (Note 
that hco, is measured from E ~ + d or E ~ - A.) Assuming a Gaussian shape for each 
vibronic band, the function Q(co) can be used to simulate (rather crudely) the CD 
spectrum associated with transitions to the manifold of vibronic states {~}. 

In our calculations, A was varied from 0 to 2, A' was varied from 0 to 15, ~ and 
]~ were varied from 0 to 10 (individually), and ~ was varied from 0 to 5. The ratios, 
co'(~)/co(~) and co'(rl)/co07), were varied from 2 to 1 (individually). 

The magnetic dipole transition moments, M~, M~, and M~, were not varied. 
The relative values chosen for them were those expected if the o o . o~ .  0 ~po---~pt, ~v o ~v 2, 
and ~Vo~ ~ electronic transitions were pure d-d transitions between a d~ orbital 
and the d,, d~, and d~ orbitals, respectively. That is, we used the following values: 
iM]=j ;  iM~z=i; iMp= - 2 k  where i = ( - 1 )  1/2, and i , j ,  and k are unit vectors in 
the x, y, and z directions, respectively. The electric dipole transition moments, 
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P] ,  P~, and P~, were treated as variables in our  calculations. Both their signs and 
relative magni tudes  were varied. 

The electronic ro ta tory  strengths, R~ = I m ( P ~ .  M~), R ~ = I m ( P ~ .  M~), and 
R~ = Im(P~ - M~), are treated as variable parameters  in our  calculations. The total  
(or net) ro ta tory  strength associated with transitions to the three coupled states, 
~po, ~po, and ~po, is invariant to the interact ion parameters  of our  model  (c~, fl, and 7) 
and is equal to, 

R(total) = ~ ,  R, = R~ + R~ + R~. (24) 

The vibronic (c~ and fl) and static (7) interactions merely lead to redistributions of  
ro ta tory  strength among the various substates of the (F0, ~po, ~po) manifold. They 
do not  introduce any new soures of  chirality into the system. 

Basis sets for the expansions of the vibronic wave functions (8) ranged in size 
from 63 (v + v = 0, 1, 2 . . . . .  5) to 108 (v + v = 0, 1, 2, ..., 7). Adequacy of basis size 
was tested according to the following criteria: (1) stability of eigenvalues and of 
eigenvector matrices;  (2) convergence of R(total) = ~ ,  R, to the sum (R~ + R~ + R~). 

All calculations were performed on a C D C  6400 comput ing  system. 

4. Results 

The results presented here were chosen to be illustrative of the model  and its 
applicat ion to the interpreta t ion of CD spectra. They are representative of the 
computed  data, but  are not  complete  (that is, results from just a few of the param- 
eter sets actually studied are presented). 

Ro ta to ry  strength spectra for a number  of different parameter  sets are displayed 
in Figs. 1-7. The energy scale in each of these figures is expressed in units of 

. - " N  c 

d 

- 2 . 0  
I I 
o 2'0 4'~ ~'o 8 ;  , ;o  ,2o' ,40 ,~o 

Fig. 1. Rotatory strength spectra for ~ =/~ = 3.0, ~ = 0.5, z] = 0.50, z]' = 7.5, 2 = hco(~) = h~o(t/) = 350 cm- 1, 
hco'(~)=hc~'(tl)=4OOcm -1. (R~, R~, R~): a. (-0.5, 1.5, -2.0); b. (0.5, - 1.5, -2.0); c. (1.0, - 1.0, -2.0); 

d. ( -  1.0, 1.0, - 2.0) 
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i i i 

V b 

2 o  2!o ,!o 6!o 81o l~o ,201~o 16o 

Fig. 2. Ro ta to ry  s t rength  spectra  for ~ = / ~ =  2.0, ,7=0.5, z] =0.5 ,  z ] '=  7.5, 2=hco(~)=ha) ( t / )=  350 cm -~, 
hoY(r -~. (Re~, R~, R~): a. ( - 0 . 5 ,  1.5, - 2 . 0 ) ;  b. (0.5, - 1.5, - 2 . 0 ) ;  c. (1.0, - 1.0, - 2 . 0 ) ;  

d. ( -  1.0, 1.0, - 2.0) 

i i i i i i i I 

p 

d 

e 

-~o ~ 1!o 2" 3!o Zo . . . .  o 

Fig. 3. Ro ta to ry  s t rength  spectra  for A = 0.25, 2 = hm(~) = hm(t/) = 350 c m -  1, hm'(~) = hm'(t/) = 400 cm - i, 
(R~, R[,  R ; ) = ( -  1.0, 1.0, - 2 . 0 )  

a. 5.0 1.0 1.0 0.1 
b. 5.0 0.1 0.1 1.0 
c. 1.0 1.0 1.0 1.0 
d. 2.5 1.0 1.0 1.0 
e. 5.0 1.0 1.0 1.0 
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i l l l l l L l ' -  

C 

I i 
-1.0 0 I g  210 310 4.0 5.0 6.0 7. .0 

Fig. 4. Ro ta to ry  s t rength  spectra  for ~] = 0.50, 2 = hco(~) = hco(~) = 350 c m -  l, hco'(~) = hco'(t/)= 400 c m -  i, 
(R~, R~, R~) = ( - 1.0, 1.0, - 2.0) 

a. 5.0 0.1 0.1 0 
b. 5.0 2.0 2.0 1.0 
c. 5.0 1.0 1.0 1.0 
d. 5.0 1.0 2.0 1.0 
e. 5.0 2.0 1.0 1.0 

�89 + hco(~/)], and the zero point on each energy scale is at E ~ + A. In calculating 
these spectra the bandwidth parameter, 2, was set equal to 350 cm- 1 in each case. 
This value is of the order of a vibrational quantum in our model system, and leads 
to rather broad, smoothed-out resultant spectra for rotatory strength. These 
spectra are most appropriately compared with CD spectra obtained on solution 
samples at room temperature. The units of rotatory strength used in Figs. 1-7 are 
arbitrary; however, the algebraic sum of band areas in each spectrum is determined 
entirely by the set of parameters (R~, R~, R~). That is the quantity, ~ ,  R, = R(total), 

R e is invariant to all parameters in our model except the set ( i, R~, R~). 
All the spectra shown in Figs. 1-7 were calculated assuming that the system 

was initially in the ground vibrational level of the ground electronic state (that is, 
"hot band" contributions were eliminated). 

The eigenvalues, symmetries, and dipole strengths computed for the lower 
vibronic levels of our model system using various parameter sets are listed in 
Tables 1-3. The symmetry designations refer to the transformation properties of 
the vibronic wave functions with respect to 180 ~ rotation about the single C~ 
axis of the model system. The eigenvalues are measured from the reference energy, 
E ~ + A, and the dipole strengths are defined in the footnote to Table 1. Except 
where ~' is less than ,-~2.0--2.5, the lower 10-13 vibronic levels (that is, the ones 



86 F .S .  R icha rdson  et al. 

p o 

p . . . . - - ~  b 

P ~ e 

p , , ~ , , , ,  a 
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Fig. 5. Ro ta to ry  s t rength  spectra  for z~ = 0.25, /~= 1.0, ~ = 0.5, 2 = h~o(~) = 350 cm - i, hoY(~) = 400 cm - l, 
(R~, R~, R~)=(1.0,  - 1.0, - 2 . 0 )  

a. 1.0 3 5 0 c m  - i  4 0 0 c m  -1 1.0 
b. 2.0 350 400 1.0 
c. 3.0 350 400 1.0 
d. 3.0 250 300 1.0 
e. 3.0 250 300 2.0 

included in Tables 1-3) only span that part of the energy spectrum close to the 
unperturbed electronic states ~v ~ and ~po. However, the evidence for significant 
mixing of ~v ~ into the lower vibronic levels is apparent from the dipole strength 
which is computed for many of the low-lying vibronic states of A symmetry. 
Transitions from the lowest vibrational level of the ground electronic state to 
vibronic states of A symmetry are z-polarized and those to vibronic states of B 
symmetry are x, y-polarized. 

5. Discussion 

The results displayed in Tables 1-3 and in Figs. 1-7 demonstrate the profound 
influence which vibronic coupling can have on the distributions of dipole strength 
and rotatory strength among the vibronic levels associated with three nearly 
degenerate electronic excited states of a chiral molecular system. The results given 
in Tables 1-3 reveal the sensitivity of vibronic level spacings and vibronic level 
orderings (with respect to symmetry type, A or B) to the relative magnitudes of the 
coupling parameters, g,/7, and 7, and to the splitting parameters, A and A'. These 
vibronic level spacing are seldom apparent from absorption or CD measurements 
on solution samples, and the polarizations (or symmetry types) of the various 
vibronic transitions can only be determined from polarized single-crystal spectral 
measurements. Note, however, that if high-resolution, polarized absorption 
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Fig. 6. Rotatory strength spectra for A =0.25, /~= 1.0, 7=0.5, 2 = ho9(r 350 cm -~, hco'(~)= 400 cm -1, 
(R], R~, R~) = ( -  1.0, 1.0, - 2.0) 

a. 1.0 350 c m -  ~ 400 cm-  1 1.0 
b. 2.0 350 400 1.0 
c. 3.0 350 400 1.0 
d. 3.0 250 300 1.0 
e. 3.0 250 300 2.0 
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Fig. 7. Rotatory strength spectra for A=0.25, g= /~= l .0 ,  7=0.50, 2=hog(~)=hco(rl)=350cm -1, 
hof(r 1 Solid line spectra (R~, R~, R ~ ) = ( - 1 . 0 ,  1.5, -2 .0) ;  broken line spectra, 

(R~, R~, R~)=(1.0, - 1.5, -2.0) .  A '=  1.0(a), 2.0(b), and 3.0(c) 
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Table 1. Eigenvalues, symmetries, and dipole strengths computed for lower vibronic levels? 3 =0.5, 
A' = 5.0, hog(~) = boo(q) = 350 cm- 1 

~=2.0,/~= 2.0, 7= 1.0 8=2.0, fl= 1.0, ~= 1.0 E= 1.0,/7= 2.0,~= 1.0 E= 1.0,/~= 1.0, ~= 1.0 

n Syra. E(cm -1) D Syrn. E(cm -1) O Sym. E(cm -1) D E(cm -a) D 

1 B -225  0 . 2 6 6  B - 1 7 4  0 . 2 9 5  B - 1 1 5  0 . 5 1 8  B -78  0 . 5 2 9  

2 A - 1 0 8  0 . 0 1 7  A -155  0 . 0 1 5  A 121 0 .C15 A 255 0 . 0 0 7  

5 A 129 0 B 214 0 , 0 5 2  A 274 0 A 521  0 

4 B 156 0 . 0 5 1  A 217 0 B 548  0 . 0 2 9  B 589 0 

5 B 202 0 . 0 2 4  B 569  0 . 0 0 7  B 490  0 . 0 1 4  B 659 0 . 0 1 8  

6 A 412 0.010 A 509  0.0(35 A 624 0 B 719 O.OOl 

7 B 478 0 B Bll 0 h 665 0.001 B 815 0 . 5 0 7  

8 A / 4 8 7  0.001 A 622 0.001 A 708 0.005 A 955 0 

9 A 518 0 A 764 0,001 B 740 0.252 A 974 0 

i0 B 606 0.129 B 775 0.279 A 860 0.002 A i011 0,005 

" Dipole strengths expressed in relative units assuming that: 

~ , . D . = I = D ~ + D ~ + D ~  and D~=D~=D~ 

where D] = I<~p~176 = dipole strength for electronic transition ~pO~po. The summation ~ ,  ex- 
tends over all vibronic levels derived from PJT coupling within the Opt ~ ~po, ~po) set of electronic states 
via the Q, and Qe vibrational modes of our model system. The ten vibronic levels listed above corre- 
spond to only the lowest energy vibronic states. 

Table 2. Eigenvalues, symmetries, and dipole strengths computed for lower vibronic levelst E=/~= 1.0, 
= 0.5, hco(~) = hco(~/) = 350 cm- 1 

3=0.25, z]'= 1.0 A =0.25, 3 '=2.0 z] = 0.25, 5 '=3.0 z] =0.25, zt'= 5.0 

n Sym. E(cm -1) O Sym. E(cm -a) D Sym. E(cm -1) D Sym. E(cm -~) O 

i B 81 0.295 B ii0 0.315 B 126 0.521 B 257 0.327 

2 A 241 0.088 A 544 0.042 A 405 0.025 B 467 0.324 

5 B 421 0.179 A 497 O A 518 0 A 569 O.011 

4 A 456 0 B 504  0 . 2 5 2  B 545 O.291  A 650  0 

5 B 546  O. 025 B 645 0 .  008 B 712 0 . 005 A 789 O. 006 

6 A 599  0.0t54 A 725 0 . 0 5 S  B 805 0.0"-'6 A 872 0 

7 B 70~ O. 105 B 76 1 O. 055 A 805 0 .  022 B 897 O. 001 

8 B 818 0 B 877 0 B 907 0 B 954 O. 005 

9 A 827 0 . 0 5 2  A 897 0 A 939 0 B 1058 0 

I0 A 829 0 A 958 0,006 A i037 0.001 B 1121 0 

a See footnote to Table 1 for definition of dipole strength. 
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Table 3. Eigenvalues, symmetries, and dipole strengths computed for lower vibronic levelst zt =0.25, 
zt' = 5.0, h~o(~) = boo(t/) = 350 c m -  l, ~ = 1.0 

Weak coupling case (~ = f i= O. 1) Intermediate coupling case (ff =/J  = 1.0) 

n Sym. E(cm- i) D n Sym. E(cm- l) D 

l B -12.6 0.352 1 B -45.5 0.329 

2 A 386.7 0 2 A 285.9 0.007 

5 A 587.4 0 5 A 554.9 0 

4 B 786.0 0.001 4 B 621.8 0 

5 B 786.7 0 5 B 665.7 0.0~2 

6 B 787.4 0.001 6 B 752.8 0.(301 

7 B 811.6 0 . 5 5 2  7 B 785.4 0.285 

8 A 1185.4 O 8 A 964.5 O 

9 A i186,0 0 9 A 1001.8 0 

i0 A 1186.7 0 i0 A 1018.4 0.006 

ii A 1187.4 0 Ii A 1151.5 0.008 

12 A 1210,8 0 12 A I150.8 0 

15 A 1211.9 0 15 A 1188.6 0 

a See footnote to Table 1 for definition of dipole strength. 

spectra could be obtained on our model system, and if A = 0.5, z]' -- 5.0, ~ = 1.0, and 
hm(~) = h~o(t/) = 350 cm-1 (see Table 1), the frequency intervals between the lowest 
energy vibronic transition of A symmetry and that of B symmetry are computed 
to be: 

= fi= 2.0 ~= ~=  1.0 ~= 2.0, fl= 1.0 ~= 1.0,/~= 2.0 

6(cm-1)= 115 331 21 236 

The results presented in Tables 1-3 also show apparently irregular energy spacings 
of the vibronic levels. That is, the spacings are not, in general, equal to single quanta 
of the Q, or Q~ vibrational modes. The computed spacings are strongly dependent 
upon the relative values ~,/~, y, A, and A'. 

The "rotatory strength spectra" shown in Figs. 1-7 suggest that considerable 
caution must be exercised in applying spectra-structure relationships to systems 
similar to our model system in the absence of a detailed vibronic analysis of the 
results. Most spectra (CD)-structure relationships proposed for chiral systems 
require assignments of bands or other features in the CD spectra to specific 
electronic transitions. These relationships generally correlate the sign and magni- 
tudes of the rotatory strength of a specific electronic transition to specific stereo- 
chemical features of the system. It is assumed that the electronic rotatory strength 
can be determined by assigning a particular CD band to the diagnostic transition 
and then relating the area under this band to the electronic rotatory strength 
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according to: 

R h = constant x ~Ae(v)dv/v 

where the integration extends over the frequency interval spanned by the assigned 
CD band. Our calculated results show that when three electronic excited states 
lie within ,-~ 4000 cm-1 of each other and are subject to moderately strong vibronic 
coupling via a PJT type mechanism, it is no longer possible to talk about pure 
electronic states or to make spectral assignments based on the assumption of 
pure electronic states. Instead, one must consider vibronic states of "mixed" 
electronic parentage insofar as the nearly degenerate pure electronic states are 
thoroughly scrambled (or mixed) by the vibronic perturbation. Distinct band 
systems and spectral features may still appear in the CD spectra, but these cannot 
be assigned to transitions to specific electronic states. 

The existence of two or three closely spaced electronic excited states which 
are subject to strong vibronic interactions is quite common in transition metal 
complexes of pseudo tetragonal symmetry. CD spectra obtained on solution 
samples of such systems are generally much too broad for detailed vibronic 
analysis. In this case, the total or net rotatory strength associated with the mani- 
fold of vibronic levels derived from the coupled electronic states is the most 
suitable chiroptical parameter to use in making spectra (CD)-structure correlat- 
ions. R(net) is invariant to the PJT type vibronic interactions which couple the 
nearly degenerate electronic states. Its sign and magnitude are determined entirely 
by stereochemical and other structure features of the chiral system. Whereas the 
splittings and sign patterns observed in the CD spectra may reflect PJT vibronic 
coupling characteristics more strongly than they reflect the detailed stereo- 
chemical features of the dissymmetric ligand environment, the total integrated 
band area of the CD spectrum in the region spanned by the vibronic levels of the 
coupled electronic states depends entirely on structural features and is independent 
of the PJT vibronic parameters. 

In our model, R(total) or R(net) is determined by R(total)= R~ + R~ + R~. We 
did not calculate R~, R~, and R~ for specific systems; instead, we introduced these 
electronic rotatory strengths as parameters. To calculate R~, R~, and R~ requires 
a specific model for the electronic structural details of the system as well as for 
the origins of the optical activity of the system. Calculations of the electronic 
rotatory strengths associated with the d-d transitions of metal complexes have 
been the subject of numerous previous studies [6, 7]. The values we chose in this 
study for (R~, R~, R~) are representative of the values expected for d-d transitions 
in pseudo tetragonal complexes comprised of various classes of chiral bidentate 
or terdentate ligands. The primary objectives of the present study were to calculate 
the vibronic wave functions and energy levels derived from PJT interactions 
between the electronic states ~po, ~po, and ~po, to examine how the total electronic 
rotatory strength, (R] +R~2+R~3), distributes among the vibronic levels, and to 
predict the resulting low-resolution CD spectra. 
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